Energy technology is undergoing global transformation. Rapidly expanding renewable energy and other, more volatile power generation plants require significantly higher flexibility of conventional plants. This has resulted in a number of new challenges for ventilation equipment, including:
An increased number of start and stop operations
Fewer full-load hours
Increased partial load operation
Lower exhaust gas temperatures due to residual heat utilization
Smaller gap to acid dew point
These factors cause an increased load on the systems which carries increased risk of corrosion during operation. This favors dew point corrosion, which can lead to total failure of fans and system components.
TLT-Turbo offers you a tailor-made solution for your plant by implementing effective corrosion protection measures to maintain uptime of your fans.
Efficient Protection against Corrosion
TLT-Turbo Corrosion Protection for fans includes two key actions: Preventing corrosion where possible and protecting components where corrosion cannot be prevented.
Avoiding corrosive conditions:
Preventing or reducing leakage of sealing air
Heating of fan components
Optimization of insulation
Use of corrosion resistant materials:
Weather resistant steel
Polymers and polymeric coatings
Stainless steel
Ni-based coatings or base materials
In order to select the measures suitable to preventing and addressing corrosion on fans operating at your facility, TLT-Turbo conducts an individual corrosion risk assessment. This assessment is based on your operational and environmental conditions.
TLT-Turbo provides further support by conducting an analysis of your specific operating conditions, e.g. on a dew point measurement based on a plant inspection.
Contact TLT-Turbo to discuss your corrosion protection needs and to find the right service package to suit your on-going requirements.
Optimal Protection against Corrosion for Existing Plants
TLT-Turbo conducts corrosion risk assessments and implements suitable preventative measures when designing and manufacturing new fans. These measures can also be carried out when retrofitting existing plants or as part of preventative maintenance during a scheduled shutdown.
Contact your service representative or the TLT-Turbo Service Department for more information on conducting a tailored risk assessment at your facility.
In TLT-Turbo’s 145-year long history of developing centrifugal and axial fans, every fan has always been carefully evaluated through extensive testing before being deemed fit for application. These tests were greatly enhanced when computational testing became available. More recently, Computational Fluid Dynamics (CFD) simulation has greatly enhanced not only TLT-Turbo’s ability to conduct thorough product testing but has also created opportunities for developing new and improved fan types.
According to Sabine Groh, Product Manager for industry fans at TLT-Turbo in Bad Hersfeld, Germany, every TLT-Turbo fan type once was carefully evaluated and aerodynamically measured in aerodynamic test stands before being released for application in the customer’s operating environment. “The arrival of stronger computer performance has allowed us to utilize CFD simulation which has had a massive effect on our ability to develop new products and to improve existing fan types.”
Groh explains that CFD has numerous advantages, all of which have become integral to TLT-Turbo’s product development. One of the greatest advantages is that CFD has enhanced the understanding of flow phenomena more efficiently than empirical testing. By using CFD it is possible to zoom in and out of any area within the simulated geometry to determine most advantageous or disadvantageous parts or geometries. With examination options such as vectorplot, a detailed analysis of the direction within the flow is possible. Similarly, using streamlineplot or velocityplot provides a detailed view of irregularities or aerodynamic phenomena.
“This analysis helps us understand the parts or geometries that cause flow separations and turbulence which allows us to address these in our product design. We can use the CFD simulations for the development or improvement of different fan types, blade geometries or spiral casing for centrifugal fans,” says Groh.
Additionally, TLT-Turbo uses CFD to understand problems in the flow of a given customer application that might result in a loss of pressure, efficiency or untypical wear of parts exposed to the flow. This equips TLT-Turbo with the knowledge needed to carry out retrofitting and product enhancements to ensure improved future performance (see flow optimization use case below).
Flow Optimization Case Study
At a European power plant, a centrifugal fan was controlled by an inlet vane control. During operation, the blades of the vane were rattling after a while and needed repair. After replacement, the same blades were showing the same failure after some operation time. Figure 1 below shows the blade of the inlet vane control dismounted of the socket.
It was assumed that the flow was not homogeneous before it reached the inlet vane control blade, and the use of air guiding plates was considered to correct the flow. Through the use of CFD, this pattern could be more deeply investigated resulting in a superior solution.
Groh unpacks the process and explains how a better solution was found using CFD: “Each CFD requires four process steps. The first step is the creation of the 3D model of the geometry to be analyzed. The second step is discretization. This involves creating a three dimensional computational mesh in the model for the volume in which the medium flows. The third step is defining the boundary conditions for the simulation and as the fourth step, the simulation of the flow can be performed.”
In this specific instance, the ductwork ahead of the malfunctioning inlet vane control, the blades of the closure unit itself and the suction box behind the closure unit were all rendered in 3D models. Figure 2 below shows the geometry that was analyzed in detail in the computer model. The ductwork upstream and downstream was included to ensure the stability of the calculation in the simulation.
After meshing of the 3D model, a simulation was performed to determine the direction of the stream in the ducting ahead the inlet vane control in more detail. Figure 3 below shows the result of the simulation.
The simulation showed that a separation of the stream led to turbulence in the flow ahead of the closure unit. With the validated conclusions of the simulation, TLT-Turbo was able to investigate different proposed solutions to remedy the problem. Figure 4 below shows the streamline plots of these different solutions.
The conclusion was that a combination of two countermeasures in the ducting would be the most advantageous solution. So ahead of the closure unit, TLT-Turbo installed a suction nozzle that helped guide the incoming flow into the duct (see blue colored suction nozzle in Figure 5 below).
Behind the closure unit, TLT-Turbo also welded a split plate (blue colored plate in Figure 5) into the suction box to help guide the stream further into the inlet vane control ahead of the centrifugal fan.
In Conclusion
The use of CFD has become an essential tool to TLT-Turbo for the development of new and more efficient fan types and blades. Instead of building numerous test models for each proposed blade or impeller type with subsequent aerodynamic model testing, different geometries can be compared in the CFD simulation directly. However, the value of CFD doesn´t end there. Increasingly, TLT-Turbo is also using CFD for aerodynamic optimization of flow in customer operating environments. That includes solving aerodynamic problems such as the example above, and for reducing wear, pressure loss or in general creating a more homogenous flow of the gas or air in the plant to maximize efficiency. Finally, the success of performance improvements as a result of replacing a fan in an existing casing, can be verified.
TLT-Turbo GmbH, global ventilation fans and systems manufacturer, today announced its success in winning a contract for the supply of Sinter fans, including complete drive system, to Baosteel for the Wuhan Sinter Project. The announcement comes amid the COVID-19 global health crisis and further indicates improving business conditions in Wuhan.
TLT-Turbo has secured a contract together with consortium partner, TMEIC (Toshiba Mitsubishi-Electric Industrial Systems Corporation) for the supply of two complete fan systems to Baosteel. Headquartered in Shanghai, China, Baosteel is globally recognised as one of the most competitive iron and steel companies with the highest level of modernization in China.
TLT-Turbo’s delivery on the project will include the supply of two sinter waste gas fans as well as the accompanying drive motors, frequency converters, transformers, switch gears and control panels. TLT-Turbo will also fulfil the role of consortium leader for the project and will take the lead on commissioning and final installation of the fan systems.
“This newly secured contract adds to the growing list of projects that TLT-Turbo has been a part of in China recently – each of which reflects our excellent teamwork and long-term success,” says Ma Le, TLT-Turbo Sales Representative based in the region.
Ma Le adds that this is the fourth contract that TLT-Turbo has won since establishing a working relationship with Baosteel in 2013. Since 2013, TLT-Turbo has delivered a total of eight sinter fans to Baosteel – one of which is the largest operational sinter fan in the world.
“The success of this relationship is built completely on teamwork. The fact that Bao Steel always returns to TLT-Turbo to order our fans also speaks highly of our commitment of quality. The resilience shown by the TLT-Turbo global team is evident in their continued success in securing contracts in this region,” adds Ralph Mansius, TLT-Turbo GmbH Sales Liaison.
A Growing Presence in China
In total, TLT-Turbo has won contracts for 18 Sinter Fans since entering the Sinter market in China in 2012. Aside from their continued success with Baosteel, TLT-Turbo also signed an additional two contracts in China’s sinter market this year.
Another notable success coming out of the region is the continued business in the CDQ (Coke Dry Quenching) market. In 2020, TLT-Turbo has won contracts for a total of 10 CDQ Fans. Says Mansius: “This proves that we are a market leader in our field – and that we are committed to working together as a global team to keep up momentum throughout the COVID-19 crisis.”
Enduring Through the COVID-19 Crisis
Ma Le acknowledges that with the COVID-19 crisis still evolving in all parts of the world, it is to be expected that some orders might be coming in slower than usual. “Businesses across the world will all be bracing for its long-term effects. However, we strongly believe that through the combined efforts of the regional TLT-Turbo teams across the world, we will be able to endure through this crisis and for long after it has passed. We are sincerely thankful to every member of the TLT-Turbo global team for the part they have played in our continued success and resilience. We have all risen to the challenge of temporarily changing how we do things – but this is just another example of Ventilation Redefined.”
Ce site utilise des cookies afin que nous puissions vous fournir la meilleure expérience utilisateur possible. Les informations sur les cookies sont stockées dans votre navigateur et remplissent des fonctions telles que vous reconnaître lorsque vous revenez sur notre site Web et aider notre équipe à comprendre les sections du site que vous trouvez les plus intéressantes et utiles.
Cookies strictement nécessaires
Cette option doit être activée à tout moment afin que nous puissions enregistrer vos préférences pour les réglages de cookie.
Si vous désactivez ce cookie, nous ne pourrons pas enregistrer vos préférences. Cela signifie que chaque fois que vous visitez ce site, vous devrez activer ou désactiver à nouveau les cookies.